Analysis of Molecular Communications on the Growth Structure of Glioblastoma Multiforme

Hamdan Awan, Andreani Odysseos, Niovi Nicolaou, Sasitharan Balasubramaniam

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

In this paper we consider the influence of inter-cellular communication on the development and progression of Glioblastoma Multiforme (GBM), a grade IV malignant glioma which is defined by an interplay Grow i.e. self renewal and Go i.e. invasiveness potential of multiple malignant glioma stem cells. Firstly, we performed wet lab experiments with U87 malignant glioma cells to study the node-stem growth pattern of GBM. Next we develop a model accounting for the structural influence of multiple transmitter and receiver glioma stem cells resulting in the node-stem growth structure of GBM tumour. By using information theory we study different properties associated with this communication model to show that the growth of GBM in a particular direction (node to stem) is related to an increase in mutual information. We further show that information flow between glioblastoma cells for different levels of invasiveness vary at different points between node and stem. These findings are expected to contribute significantly in the design of future therapeutic mechanisms for GBM.

Original languageEnglish
Title of host publication2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728181042
DOIs
Publication statusPublished - 2021
Event2021 IEEE Global Communications Conference, GLOBECOM 2021 - Madrid, Spain
Duration: 07 Dec 202111 Dec 2021

Publication series

Name2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings

Conference

Conference2021 IEEE Global Communications Conference, GLOBECOM 2021
Country/TerritorySpain
CityMadrid
Period07/12/202111/12/2021

Fingerprint

Dive into the research topics of 'Analysis of Molecular Communications on the Growth Structure of Glioblastoma Multiforme'. Together they form a unique fingerprint.

Cite this