Abstract
A Hopf hypersurface in a (para-)Kaehler manifold is a real hypersurface for which one of the principal directions of the second fundamental form is the (para-)complex dual of the normal vector. We consider particular Hopf hypersurfaces in the space of oriented geodesics of a non-flat space form of dimension greater than 2. For spherical and hyperbolic space forms, the space of oriented geodesics admits a canonical Kaehler–Einstein and para-Kaehler–Einstein structure, respectively, so that a natural notion of a Hopf hypersurface exists. The particular hypersurfaces considered are formed by the oriented geodesics that are tangent to a given convex hypersurface in the underlying space form. We prove that a tangent hypersurface is Hopf in the space of oriented geodesics with respect to this canonical (para-)Kaehler structure if and only if the underlying convex hypersurface is totally umbilic. In the case of three dimensional space forms there exists a second canonical complex structure which can also be used to define Hopf hypersurfaces. We prove that in this dimension, the tangent hypersurface of a convex hypersurface in the space form is Hopf if and only if the underlying convex hypersurface is totally umbilic.
Original language | English |
---|---|
Pages (from-to) | 1129-1135 |
Number of pages | 7 |
Journal | Journal of Geometry |
Volume | 108 |
Issue number | 3 |
DOIs | |
Publication status | Published - 01 Dec 2017 |
Keywords
- Hopf hypersurfaces
- hyperbolic n-space
- n-sphere
- space of oriented geodesics
- spaces of constant curvature