TY - GEN
T1 - Hybrid renewable energy routing for ISP networks
AU - Mineraud, Julien
AU - Wang, Liang
AU - Balasubramaniam, Sasitharan
AU - Kangasharju, Jussi
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/7/27
Y1 - 2016/7/27
N2 - The ICT industry has come under criticism as being one of the major energy consumers to exacerbate high global carbon emissions. Meanwhile, using renewable energy to power ICT infrastructure is becoming an attractive solution and is gaining its momentum due to the recent breakthroughs of converting solar and wind energies as power sources at competitive costs. Although significant amounts of fossil fuel based-energy can be saved by allowing network devices (e.g., routers and line-cards) to be set to sleep, this optimization approach comes at a price of degrading routing performance, i.e., the quality of service. This paper addresses the problem of minimizing fossil fuel consumption in large Internet Service Provider (ISP) networks, by utilizing a novel gradient-based routing protocol, which favors forwarding packets along routers powered by the highest quantity of renewable energies. Besides favoring renewable energy, the proposed routing protocol can support putting routers to sleep in order to optimize energy consumption while ensuring a minimum degradation in routing performance. Through our evaluation utilizing real meteorological data, our proposed solution has demonstrated a massive reduction of fossil fuel usage by the network (> 70%) while maintaining the routing performance to a similar level when no energy optimization is applied.
AB - The ICT industry has come under criticism as being one of the major energy consumers to exacerbate high global carbon emissions. Meanwhile, using renewable energy to power ICT infrastructure is becoming an attractive solution and is gaining its momentum due to the recent breakthroughs of converting solar and wind energies as power sources at competitive costs. Although significant amounts of fossil fuel based-energy can be saved by allowing network devices (e.g., routers and line-cards) to be set to sleep, this optimization approach comes at a price of degrading routing performance, i.e., the quality of service. This paper addresses the problem of minimizing fossil fuel consumption in large Internet Service Provider (ISP) networks, by utilizing a novel gradient-based routing protocol, which favors forwarding packets along routers powered by the highest quantity of renewable energies. Besides favoring renewable energy, the proposed routing protocol can support putting routers to sleep in order to optimize energy consumption while ensuring a minimum degradation in routing performance. Through our evaluation utilizing real meteorological data, our proposed solution has demonstrated a massive reduction of fossil fuel usage by the network (> 70%) while maintaining the routing performance to a similar level when no energy optimization is applied.
KW - Energy-aware routing
KW - Renewable energy
KW - Solar energy
KW - Wind energy
UR - http://www.scopus.com/inward/record.url?scp=84983266272&partnerID=8YFLogxK
U2 - 10.1109/INFOCOM.2016.7524502
DO - 10.1109/INFOCOM.2016.7524502
M3 - Conference contribution
AN - SCOPUS:84983266272
T3 - Proceedings - IEEE INFOCOM
BT - IEEE INFOCOM 2016 - 35th Annual IEEE International Conference on Computer Communications
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 10 April 2016 through 14 April 2016
ER -