TY - JOUR
T1 - MiR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression
AU - Corcoran, Claire
AU - Rani, Sweta
AU - O'Driscoll, Lorraine
PY - 2014/9
Y1 - 2014/9
N2 - BACKGROUND Docetaxel-resistance limits successful treatment of castration resistant prostate cancer. We previously demonstrated that extracellular vesicles (exosomes) may play a role in regulating docetaxel resistance. Here, we investigated intracellular and extracellular (exosomal) miRNAs related to docetaxel resistance. METHODS Following global miRNA profiling of cell line models of docetaxel-resistance and their corresponding exosomes, we investigated the clinical relevance of four selected miRNAs (miR-598, miR-34a, miR-146a, miR-148a) in four publically available clinical cohorts representing both primary and advanced disease in tissue and urine specimens. One of these miRNAs, miR-34a was selected for functional evaluation by miRNA inhibition and over-expression in vitro. We further assessed the panel of miRNAs for their combined clinical relevance as a biomarker signature by examining their common predicted targets. RESULTS A strong correlation was found between the detection of miRNAs in exosomes and their corresponding cells of origin. Of the miRNAs chosen for further validation and clinical assessment, decreased miR-34a levels showed substantial clinical relevance and so was chosen for further analysis. Manipulating miR-34a in prostate cancer cells confirms that this miRNA regulates BCL-2 and may, in part, regulate response to docetaxel. When combined, these miRNAs are predicted to regulate a range of common mRNA targets, two of which (e.g., SNCA, SCL7A5) demonstrate a strong relationship with prostate cancer progression and poor prognosis. CONCLUSIONS This study supports the extracellular environment as an important source of minimally invasive predictive biomarkers representing their cellular origin. Using miR-34a as example, we showed that biomarkers identified in this manner may also hold functional relevance. Prostate 74: 1320-1334, 2014.
AB - BACKGROUND Docetaxel-resistance limits successful treatment of castration resistant prostate cancer. We previously demonstrated that extracellular vesicles (exosomes) may play a role in regulating docetaxel resistance. Here, we investigated intracellular and extracellular (exosomal) miRNAs related to docetaxel resistance. METHODS Following global miRNA profiling of cell line models of docetaxel-resistance and their corresponding exosomes, we investigated the clinical relevance of four selected miRNAs (miR-598, miR-34a, miR-146a, miR-148a) in four publically available clinical cohorts representing both primary and advanced disease in tissue and urine specimens. One of these miRNAs, miR-34a was selected for functional evaluation by miRNA inhibition and over-expression in vitro. We further assessed the panel of miRNAs for their combined clinical relevance as a biomarker signature by examining their common predicted targets. RESULTS A strong correlation was found between the detection of miRNAs in exosomes and their corresponding cells of origin. Of the miRNAs chosen for further validation and clinical assessment, decreased miR-34a levels showed substantial clinical relevance and so was chosen for further analysis. Manipulating miR-34a in prostate cancer cells confirms that this miRNA regulates BCL-2 and may, in part, regulate response to docetaxel. When combined, these miRNAs are predicted to regulate a range of common mRNA targets, two of which (e.g., SNCA, SCL7A5) demonstrate a strong relationship with prostate cancer progression and poor prognosis. CONCLUSIONS This study supports the extracellular environment as an important source of minimally invasive predictive biomarkers representing their cellular origin. Using miR-34a as example, we showed that biomarkers identified in this manner may also hold functional relevance. Prostate 74: 1320-1334, 2014.
KW - BCL-2
KW - biomarkers
KW - docetaxel-resistance
KW - exosomes
KW - microRNA
KW - miR-34a
KW - prostate cancer
UR - http://www.scopus.com/inward/record.url?scp=84905902711&partnerID=8YFLogxK
U2 - 10.1002/pros.22848
DO - 10.1002/pros.22848
M3 - Article
C2 - 25053345
AN - SCOPUS:84905902711
VL - 74
SP - 1320
EP - 1334
JO - Prostate
JF - Prostate
SN - 0270-4137
IS - 13
ER -