Multi-response optimization in high-speed machining of Ti-6Al-4V using TOPSIS-fuzzy integrated approach

Adel T. Abbas, Neeraj Sharma, Saqib Anwar, Monis Luqman, Italo Tomaz, Hussien Hegab

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Titanium alloys are widely used in various applications including biomedicine, aerospace, marine, energy, and chemical industries because of their superior characteristics such as high hot strength and hardness, low density, and superior fracture toughness and corrosion resistance. However, there are different challenges when machining titanium alloys because of the high heat generated during cutting processes which adversely affects the product quality and process performance in general. Thus, optimization of the machining conditions while machining such alloys is necessary. In this work, an experimental investigation into the influence of different cutting parameters (i.e., depth of cut, cutting length, feed rate, and cutting speed) on surface roughness (Rz), flank wear (VB), power consumption as well as the material removal rate (MRR) during high-speed turning of Ti-6Al-4V alloy is presented and discussed. In addition, a backpropagation neural network (BPNN) along with the technique for order of preference by similarity to ideal solution (TOPSIS)-fuzzy integrated approach was employed to model and optimize the overall cutting performance. It should be stated that the predicted values for all machining outputs demonstrated excellent agreement with the experimental values at the selected optimal solution. In addition, the selected optimal solution did not provide the best performance for each measured output, but it achieved a balance among all studied responses.

Original languageEnglish
Article number1104
JournalMaterials
Volume13
Issue number5
DOIs
Publication statusPublished - 01 Mar 2020
Externally publishedYes

Keywords

  • Machining
  • Optimization
  • Ti-6Al-4V

Fingerprint

Dive into the research topics of 'Multi-response optimization in high-speed machining of Ti-6Al-4V using TOPSIS-fuzzy integrated approach'. Together they form a unique fingerprint.

Cite this