TY - JOUR
T1 - Performance analysis of plant monitoring nanosensor networks at THz frequencies
AU - Afsharinejad, Armita
AU - Davy, Alan
AU - Jennings, Brendan
AU - Brennan, Conor
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2016/2
Y1 - 2016/2
N2 - Future wireless nanosensor networks are envisioned to operate in the THz band, due to the tiny size of the network components. Among the diverse range of applications that such networks promise, high-resolution plant monitoring systems are the categories which can benefit from the size and high sensitivity of nanosensor devices and also the high bandwidth provided by them. However, communications at the THz frequency band, especially within a hybrid channel like plant foliage, undergo peculiar types of attenuation and distortion. These phenomena, which can challenge the feasibility of the aforementioned applications, need to be addressed/modeled precisely. Therefore, in this paper, we propose the first THz path-loss model within a plant environment. In addition, we provide a simplified model of plant structure as well as a model for the probability of successful transmissions between nanosensors and microscale receivers mounted on the plant stem. The introduced models consider the limited capability of THz radiation to propagate through plant leaves, and also the high free-space path-loss as the main sources of signal loss in the network communications. Furthermore, these models can be customized based on the structural characteristics of a plant, e.g., leaves size and distribution, to account for a variety of plant species. Finally, the performance of communications based on the provided models is evaluated for different network scenarios.
AB - Future wireless nanosensor networks are envisioned to operate in the THz band, due to the tiny size of the network components. Among the diverse range of applications that such networks promise, high-resolution plant monitoring systems are the categories which can benefit from the size and high sensitivity of nanosensor devices and also the high bandwidth provided by them. However, communications at the THz frequency band, especially within a hybrid channel like plant foliage, undergo peculiar types of attenuation and distortion. These phenomena, which can challenge the feasibility of the aforementioned applications, need to be addressed/modeled precisely. Therefore, in this paper, we propose the first THz path-loss model within a plant environment. In addition, we provide a simplified model of plant structure as well as a model for the probability of successful transmissions between nanosensors and microscale receivers mounted on the plant stem. The introduced models consider the limited capability of THz radiation to propagate through plant leaves, and also the high free-space path-loss as the main sources of signal loss in the network communications. Furthermore, these models can be customized based on the structural characteristics of a plant, e.g., leaves size and distribution, to account for a variety of plant species. Finally, the performance of communications based on the provided models is evaluated for different network scenarios.
KW - High-resolution plant monitoring
KW - Path-loss model
KW - THz communications
KW - Wireless nanosensor networks (WNSNs)
UR - http://www.scopus.com/inward/record.url?scp=84959431763&partnerID=8YFLogxK
U2 - 10.1109/JIOT.2015.2463685
DO - 10.1109/JIOT.2015.2463685
M3 - Article
AN - SCOPUS:84959431763
VL - 3
SP - 59
EP - 69
JO - IEEE Internet of Things Journal
JF - IEEE Internet of Things Journal
SN - 2327-4662
IS - 1
M1 - 7174937
ER -